Ultraporous, Water Stable, and Breathing Zirconium-Based Metal-Organic Frameworks with ftw Topology.

نویسندگان

  • Pravas Deria
  • Diego A Gómez-Gualdrón
  • Wojciech Bury
  • Herbert T Schaef
  • Timothy C Wang
  • Praveen K Thallapally
  • Amy A Sarjeant
  • Randall Q Snurr
  • Joseph T Hupp
  • Omar K Farha
چکیده

"Breathing" metal-organic frameworks (MOFs) are an emerging class of soft porous crystals (SPCs) with potential for high working capacity for gas storage applications. However, most breathing MOFs have low stability and/or low surface area. Here we report a water-stable, high surface area, breathing MOF of ftw topology, NU-1105. While Zr6-oxo clusters as nodes introduce water stability in NU-1105, its high surface area and breathing character stem from its pyrene-based tetracarboxylate (Py-FP) linkers, in which the fluorene units (F) in the FP "arms" play a key role in promoting breathing behavior. During gas sorption studies, the "closed pore" (cp) ↔ "open pore" (op) transition of NU-1105 occurs at a propane pressure of ∼3 bar. At 1 bar, NU-1105 is in its cp form and adsorbs less propane than it would in its op form, highlighting improved working capacity. In situ powder X-ray diffraction during propane sorption was used to track the cp ↔ op transition, and molecular modeling was used to elucidate the structure of the op and cp forms of NU-1105. According to TD-DFT calculations, the proposed conformations of the Py-FP linkers in the op and cp forms are consistent with the measured excitation and emission spectra of the op and cp forms of NU-1105. Similar structural transitions are also observed in the porphyrinic MOF NU-1104 depending on the identity of the porphyrin core; we observed breathing behavior if the constituent Por-PTP linker is nonmetalated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ultrahigh surface area zirconium MOFs and insights into the applicability of the BET theory.

An isoreticular series of metal-organic frameworks (MOFs) with the ftw topology based on zirconium oxoclusters and tetracarboxylate linkers with a planar core (NU-1101 through NU-1104) has been synthesized employing a linker expansion approach. In this series, NU-1103 has a pore volume of 2.91 cc g(-1) and a geometrically calculated surface area of 5646 m(2) g(-1), which is the highest value re...

متن کامل

Metal-organic frameworks based on previously unknown Zr8/Hf8 cubic clusters.

The ongoing study of zirconium- and hafnium-porphyrinic metal-organic frameworks (MOFs) led to the discovery of isostructural MOFs based on Zr8 and Hf8 clusters, which are unknown in both cluster and MOF chemistry. The Zr8O6 cluster features an idealized Zr8 cube, in which each Zr atom resides on one vertex and each face of the cube is capped by one μ4-oxygen atom. On each edge of the cube, a c...

متن کامل

Synthesis, structure, and metalation of two new highly porous zirconium metal-organic frameworks.

Three new metal-organic frameworks [MOF-525, Zr(6)O(4)(OH)(4)(TCPP-H(2))(3); MOF-535, Zr(6)O(4)(OH)(4)(XF)(3); MOF-545, Zr(6)O(8)(H(2)O)(8)(TCPP-H(2))(2), where porphyrin H(4)-TCPP-H(2) = (C(48)H(24)O(8)N(4)) and cruciform H(4)-XF = (C(42)O(8)H(22))] based on two new topologies, ftw and csq, have been synthesized and structurally characterized. MOF-525 and -535 are composed of Zr(6)O(4)(OH)(4) ...

متن کامل

Highly Porous Zirconium Metal-Organic Frameworks with β-UH3-like Topology Based on Elongated Tetrahedral Linkers.

Two non-interpenetrated zirconium metal-organic frameworks (Zr-MOFs), NPF-200 and NPF-201, were synthesized via the assembly of elongated tetrahedral linkers with Zr6 and Zr8 clusters. They represent the first examples of MOFs to have the β-UH3-like, 4,12,12T1 topology. Upon activation, NPF-200 exhibits the largest BET surface area (5463 m(2) g(-1)) and void volume (81.6%) among all MOFs formed...

متن کامل

High efficiency adsorption and removal of selenate and selenite from water using metal-organic frameworks.

A series of zirconium-based, metal-organic frameworks (MOFs) were tested for their ability to adsorb and remove selenate and selenite anions from aqueous solutions. MOFs were tested for adsorption capacity and uptake time at different concentrations. NU-1000 was shown to have the highest adsorption capacity, and fastest uptake rates for both selenate and selenite, of all zirconium-based MOFs st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 137 40  شماره 

صفحات  -

تاریخ انتشار 2015